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Preface

Operations in Afghanistan and Iraq have demonstrated the Army’s increasing reliance on
communications. Tactical forces on the move and widely dispersed were stressed to commu-
nicate voice and other data, including text messages, database transfers, real-time video, and
imagery. These applications are bandwidth intensive, an especially challenging problem for
forces on the move that cannot use high-gain antennas. The data demands of future forces
are expected to increase even further.

This report focuses on how the Army might use bandwidth better, specifically how
compression technologies and network management techniques might help to improve effec-
tive information throughput.

This research was sponsored by the Army CIO/G-6 and was conducted in RAND
Arroyo Center’s Force Development and Technology Program. RAND Arroyo Center, part
of the RAND Corporation, is a federally funded research and development center sponsored
by the United States Army.
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For more information on RAND Arroyo Center, contact the Director of Operations (tele-
phone 310-393-0411, ex. 6419; FAX 310-451-6952; e-mail Marcy_Agmon@rand.org), or
visit Arroyo’s web site at http://www.rand.org/ard/.
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Summary

Operations in Afghanistan and Iraq demonstrated the Army’s increasing reliance on com-
munications. Tactical forces on the move and widely dispersed were stressed to communicate
voice and data and were unable to exchange database transfers, real-time video, and imagery.
These applications take a lot of bandwidth,1 an especially challenging problem for forces on
the move that cannot use high-gain antennas. Furthermore, future demands seem likely to
increase. Researchers from RAND Arroyo Center have been seeking ways in which the Army
might use bandwidth better, specifically how new compression technologies might help im-
prove information throughput. The objective of compression is to reduce the amount of data
required to store or transmit digital information.

Compression Techniques

Compression algorithms can exploit several potential methods of data reduction. One is by
improving coding efficiency. Coding inefficiency arises when the standard way of encoding a
message unit uses more bits than necessary. For example, using a byte (8 bits) to encode 26
alphabetic characters is inefficient because a byte can encode up to 256 distinct characters. A
second way to reduce data is to reduce redundancy in messages. A third way is to approxi-
mate the message rather than transmit it exactly. For example, video transmission might
suppress minor changes from one frame to the next.2

Results

Lossless compression algorithms can achieve compression ratios up to 9:1; lossy compression
algorithms can achieve ratios as high as 350:1. However, data compression involves tradeoffs.
The most important of these is that the aggressive use of lossy compression yields lower
quality. To achieve better quality, lossy algorithms are used more conservatively, yielding
compression ratios about an order of magnitude lower than their maximums. More complex
_______________
1 Strictly defined, bandwidth is the width of the frequency spectrum of a signal, in Hertz. However, this report uses the
term’s more common meaning: data rate, measured in bits per second (bps). These two definitions are interrelated by Shan-
non’s law of information theory, which states that a communications channel of a certain width has a maximum rate at
which information can be transferred. This maximum rate is known as the channel capacity.
2 The technique of using an approximation of the original rather than an exact replica is called “lossy” compression. Those
algorithms that do not apply this technique are called “lossless” compression. The highest compression rates are typically
achieved with lossy algorithms.
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algorithms can be designed to retain quality at high compression ratios, at the cost of in-
creased computation. The needs of users may vary over time, so the use of compression tech-
niques needs to remain flexible. Still, the research indicates that the Army can take advantage
of commercial compression technologies, although it needs to define what is an acceptable
loss in quality and may also have to provide users with increased computing power.

Network accelerators can improve throughput by factors of 2 to 3. Their use requires
changes to network structure and operations, but only for the last link to the user. Network
accelerators allow the user to control bandwidth usage so that individuals could specify the
amount of compression needed for their specific missions. The combination of new com-
pression techniques with network accelerators lets users manage their individual bandwidth
needs and could potentially reduce bandwidth demands by an order of magnitude. While
most of these technologies are currently commercially available, their use may require re-
search and development into techniques to enhance real-time streaming data as well as user
training to manage needs for quality.

Recommendations

Lessons from Operation Iraqi Freedom imply that the Army will need to make best use of
available bandwidth. This report discusses how existing data compression and network man-
agement techniques could be applied in the near to medium term to improve performance.
These techniques would not “solve the bandwidth bottleneck” but would contribute to bet-
ter performance with minimal impact on existing networks. These techniques are “low-
hanging fruit” that could be harvested to increase performance.

We recommend that the Army do the following:

• Incorporate compression and network acceleration technologies into future systems.
• Identify where Army-specific tailoring could improve on commercial data compres-

sion technologies.
• Develop an experimental plan to determine acceptable compression-related losses in

quality and to train users.

Of these three recommendations, the last one will prove the most difficult to achieve
and in some ways is the most important. The recommendation is that the Army develop a
systematic experimentation program to determine user needs on an objective basis and, even-
tually, to train users on what level of communications support they should expect and re-
quest. This recommendation is fundamental to determining the required design of future
communications networks for the Army.
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CHAPTER ONE

Lessons from Recent Operations on Army Demands for
Bandwidth

Background

Previous RAND Arroyo Center research identified a number of ways to increase bandwidth,
that is, the capacity of communication infrastructure to transmit data (Joe and Porche,
2004). No single technique was found to dramatically increase bandwidth; rather, a combi-
nation of techniques was recommended. Some of them will require major changes to the
Army’s communications networking, particularly moving to higher frequencies, developing
new networking technologies and protocols, and using vertical nodes to increase connectivity
and throughput.

The Army and Department of Defense (DoD) are developing new communications
systems to increase bandwidth from the strategic to tactical levels. These programs include
the Transformational Communications Architecture (TCA) to develop a space-based very-
high-bandwidth backbone, the Warfighting Information Network–Tactical (WIN-T) for
higher tactical echelons, and the Joint Tactical Radio System (JTRS) for lower tactical eche-
lons. These programs will greatly increase both bandwidth and on-the-move capabilities.
While initial operating capabilities are planned for 2006, it will take several more years for
widespread deployment to occur.

This report focuses on near- and mid-term solutions using data compression, which
can be applied in existing communications systems as well as the new ones under develop-
ment. This strategy for better use of bandwidth may increase throughput for certain types of
information by up to an order of magnitude. While these are not sufficient to solve the
bandwidth shortfall, they can help to alleviate the near-term problem.

Although the Army has had in place digitization programs for the last ten years, Op-
eration Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) were the first major
operations that pointed the way toward how the Army will communicate in the future.  We
begin by briefly discussing some implications on Army needs for bandwidth, including how
Army communications have evolved toward much greater dependence on digital networks
supporting mobile on-the-move tactical forces.
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Recent Operations

The Army, and more generally the Department of Defense, has greatly increased communi-
cations capacity and utilization since September 11, 2001. This increase was evident in the
recent OEF and OIF operations. Table 1 summarizes this growth.

Table 1
Growth in Communication Infrastructure and Demands Between September 11, 2001
and April 3, 2003

Communications System Capabilities Growth

Defense Red Switch Network (DRSN) Infrastructure increased 400%

Secure Internet Protocol Router Network (SIPRNET) Capacity increased 292%

Non-Secure Internet Protocol Router Network (NIPRNET) Capacity increased 509%

Defense Switched Network (DSN) Infrastructure increased 138%

DISN Video Secure Global (DVSG) Usage increased 1150%

Enhanced Mobile Satellite Services (EMSS) Users increased 300% and usage increased 3300%

SOURCE: Raduege (2003).

The Defense Red Switch Network (DRSN) provides secure communications be-
tween fixed facilities. The Secure Internet Protocol Router Network (SIPRNET) provides a
secure (up to Secret) digital internet network supporting messaging, database sharing, and
collaboration tools. The Non-Secure Internet Protocol Router Network (NIPRNET) pro-
vides digital network access at an unclassified level with access limited to authorized users.
The Defense Switched Network (DSN) provides unclassified communications to DoD users
at fixed facilities. The DISN (Defense Information System Network) Video Secure Global
(DVSG) provides classified videoteleconferencing to DoD users in fixed locations. The En-
hanced Mobile Satellite Services (EMSS) is based on the Iridium satellite communications
system to provide global voice and limited data access to satellite communications.

All of these communications systems have more than doubled their physical size since
9/11. In addition, usage of video communications and connections to mobile users (DVSG
and EMSS) has increased by more than an order of magnitude in the same time period.

Based on Table 1 and other lessons learned from OEF and OIF (USMC, 2003;
Wallace, 2003; Moran, 2003; 3ID, 2003; Shaaber, Hedberg, and Wesson, 2003; Raduege,
2004), some implications on future communications usage can be identified.

• Globally connected communication is desired for mobile tactical forces while they are
moving in terrain ranging from highly mountainous to relatively flat.

• Ground forces will operate with increased dispersion (twice the maneuver area with
half the forces compared to Desert Storm), straining and many times exceeding the
communications capability of terrestrially based communications.

• Users at all echelons will demand access to communications networks for services and
information, and that access will include all classification levels.

• Commanders will rely on blue force tracking to know where their forces are located
for both planning and execution of missions.
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• Real-time video and access to videoteleconferences will be demanded at all classifica-
tion levels.

Unique Problems for Mobile Forces

Army after action reports cite the unique problems of ground forces in communicating large
amounts of data to moving forces (3ID, 2003; Shaaber, Hedberg, and Wesson, 2003). While
moving, forces are not able to connect using landlines or high-capacity satellite terminals.
Instead they must rely on antennas that are able to transmit and receive over a large range of
directions to account for the movement of antennas on vehicles moving over possibly rough
terrain. These antennas have little gain, or directionality, so that data rate throughput is lim-
ited to tens of kilobits per second.

This data rate is sufficient to convey compressed voice with reasonable quality, as
specified in NATO Standardization Agreement (STANAG) 4591. This STANAG is based
on quality-of-service tests of different voice coders, with acceptable quality at data rates as
low as 2.4 kbps (NATO, 2002). Other user needs, however, are not supportable at this data
rate. For instance, a single medium-quality small-area image consisting of 5MB of data
would take over eight minutes to transmit. A high-quality teleconference using current tech-
nologies would require a data rate of 384 kbps.

The data rates needed to provide the services listed in Table 1 far exceed those that
are available to mobile users. As a result, high-quality services such as imagery and videotele-
conferences were only available to higher-echelon commanders (brigade and above) and only
when they were able to stop and set up high-capacity satellite radio antennas. Lower tactical
echelons were not able to access these services and relied on lower data rate communications
links when moving.

Ongoing Efforts to Increase Throughput to Mobile Users

The Army Communications and Electronics Command (CECOM) is actively researching
new communications networking technologies to drastically improve communications net-
work performance (CECOM, 2002). The Multifunctional On-the-Move Secure Adaptive
Integrated Communications (MOSAIC) Advanced Technology Demonstration is examining
new technologies to improve quality of service, to allow prioritization of user communica-
tions, to increase security of communications, and to use compression to reduce the load on
communications. The MOSAIC program and follow-on efforts are working to develop and
improve communications for the future force.

The Army has also contracted to provide improved communications networking to
static forces on a global basis (CBO, 2003). This technology allows users in the logistics
community to dynamically manage network performance to allocate scarce communications
capacity to meet urgent user needs. Less urgent needs are spread out in time to use networks
when there is slack capacity available. This technology focuses on network management and
is currently used on the existing global information grid.

At the same time, commercial industry is actively developing new technologies to
connect mobile users of cellular phones to transmit and receive images and video. Current
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cellular phones are frequently equipped with low-resolution cameras that allow snapshots
and video to be transmitted over cellular land-based and satellite networks. The video from
these phones has low-resolution images with low frame rates, resulting in jerky motion. This
type of technology has been used, however, by news organizations such as CNN to allow re-
porters to file stories in real time using minimal equipment. While the images are low quality
in a technical sense, the timeliness of the reports and the proximity to ongoing events have
proved effective.

DoD is also proposing new operational concepts based on networked forces, i.e.,
network-centric operations (GIG, 2002). This concept calls for military forces to be inter-
connected on a global basis to share information and develop and execute plans that are
more comprehensive and timely than any adversary can match. DoD’s plans include globally
based Network-Centric Enterprise Services (NCES) and new communications systems to
provide broadband access to static and global forces. These plans are for future force opera-
tions in the 2012-and-beyond timeframe.

Implications for the Army and Motivation of This Report

The convergence of evolving user needs and ongoing technological advances provides the
Army an opportunity to rapidly field capabilities to its tactical forces to improve communica-
tions services.

The operational implications of OIF lead to a number of new challenges to Army
communications:

1. Connectivity to tactical forces will be needed in an environment where forces are mobile
and dispersed, in many cases, beyond the range of terrestrial communications links. This
leads to systems that use satellites and/or airborne nodes to maintain connectivity.

2. Users will rely on communications networks for services and information.

3. Users will need a higher quality of service to ensure connectivity, secure access, and real-
time audio and video. This will increasingly strain available communications capacity.

All of these lessons imply that the Army will need to make the best use of available
bandwidth. This report discusses how existing data compression and network management
techniques could be applied in the near to medium term to improve performance prior to
the fruition of the Army’s future force or the DoD’s network-centric concepts.

It is important to note that previous studies (CBO, 2003; Hillman et al., 2002; JHU,
2002; Joe and Porche, 2004) have estimated potential shortfalls in bandwidth capacities in
the future force of over an order of magnitude. These estimates already assume a degree of
compression comparable to the estimates used in this report. The recommendations of this
report are focused on improving near- to mid-term capabilities with existing techniques.
These techniques will not “solve the bandwidth bottleneck” but would contribute to im-
proving performance with minimal impact on existing networks.
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Organization of This Report

The next four chapters discuss various aspects of compression, beginning with a general dis-
cussion of compression, followed by chapters on lossless compression and lossy compression
of images and video. A chapter describing commercial network acceleration technologies
follows, and the report concludes with a summary and a set of recommendations.
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CHAPTER TWO

Overview of Data Compression

The objective of compression is to reduce the amount of data required to store or transmit
digital information. Digital information can take many forms. Some common types of digi-
tal information are:

• textual documents such as email messages, memos, letters, and other documents;
• images such as drawings, illustrations, and photographs; and
• temporal media, or signals that change over time, such as audio and video.

For each of these types there are standard ways of storing or transmitting the information,
which have been determined by convenience, simplicity, and tradition. Typically, the price
of this convenience is a larger data size than is absolutely necessary to convey the informa-
tion. Compression is the process of reducing the size of the data.

Storing and Transmitting Digital Data

All digital data is stored as a series of bits containing ones and zeros. A single bit could be
used to encode two distinct messages. That is, a zero can be used for one possible message
and a one can be used for another possible message. Two bits can encode up to four distinct
messages, represented by 00, 01, 10, and 11. A series of eight bits is a byte, and a byte can
encode 28, or 256 distinct messages. Information theory states a general relationship between
the size of the encoding and the number of possible messages that it can encode: an encoding
scheme that uses n bits can encode up to 2n distinct messages. Typically, large messages such
as text documents or images are first broken down into small units, and each unit is encoded
separately. For example, a text document is typically encoded as a series of individual charac-
ters, while an image is typically encoded as a series of picture elements, or pixels, starting at
the top left corner of the image and scanning from left to right, top to bottom. In both cases,
each unit is typically encoded in a byte or a few bytes.

The same information can be digitally encoded in multiple ways, some of which are
more compact, or efficient, than others. For example, consider Paul Revere’s alleged message
about whether the British were coming by land or sea. Revere chose to use a signal of one or
two lanterns in a church tower for his message. This encoding scheme was a very efficient
way of sending the small set of messages he wanted to be able to send. Virtually any other
method of encoding his messages would have required more data. For example, if he had
tried to spell out the text “The British are coming by sea” in lights, he would have needed
many more than two lanterns. Revere’s encoding had one bit (he had only one choice to
make: either one lantern or two), so he could only encode 21, or two distinct messages.
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By choosing this very efficient coding scheme, Revere limited the variety of messages
he could send. In addition, every message recipient had to be notified in advance how to in-
terpret the two signals. Once Revere set up this scheme, if he had wanted to send the mes-
sage “The British are coming by air,” there would not have been any way for him to do it.
This limitation was acceptable to him because he had only two possible messages he would
want to send. The less efficient scheme of spelling out a word with lights would have given
him much more flexibility in exactly what messages he could send, at the expense of a much
larger data size.

Sources of Data Compression

There are several potential methods of data reduction that can be exploited by compression
algorithms.

The first is to improve coding efficiency. Coding inefficiency arises when the stan-
dard way of encoding a message unit uses more bits than necessary. For example, using a
byte (8 bits) to encode 26 alphabetic characters is not efficient because a byte can actually
encode up to 256 distinct characters. Actually, 5 bits would be sufficient to encode 26 alpha-
betic characters, because 5 bits can encode up to 32 distinct messages.

A second way to achieve data reduction is to reduce redundancy in messages. For ex-
ample, suppose a security camera is monitoring an empty room by transmitting a video
frame every 1/30th of a second, the frame rate for video in the NTSC (National Television
System Committee) standard. As long as nothing moves in the room and the lighting does
not change, frame after frame of the video from that camera will be identical (ignoring noise
for the moment). Thus, transmitting every frame of the video when nothing is happening in
the room is redundant. A compression scheme might take advantage of this redundancy by
only transmitting frames when they differ from the previous frame, reducing the total
amount of data transmitted.

A third method for achieving compression is to approximate the message rather than
transmitting it exactly. For example, consider the same security camera watching the same
room, but with an insect crawling across the wall. The movement of this insect will cause
successive frames of the video to differ slightly. This would limit the ability to take advantage
of message redundancy described above. However, changes as small as the motion of an in-
sect might be viewed as insignificant for security purposes. A compression scheme might take
advantage of this by suppressing very tiny changes in the video from one frame to the next.
This would restore the ability to obtain compression through message redundancy. However,
this type of compression comes at the cost of accuracy. The video received would no longer
be identical to the original video captured by the camera, although it might be considered an
acceptable approximation. This type of compression is called lossy compression. In lossy
compression, some information is lost, such that the recipient of the message cannot exactly
reconstruct the original data.

Improving Coding Efficiency

For illustration of these various compression methods, let us consider textual documents.
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ASCII (American Standard Code for Information Interchange) is a standard way of
digitally storing textual documents that use the Roman alphabet. In ASCII, each letter,
number, space, or symbol occupies one byte. This size was chosen because computer mem-
ory is organized in multiples of bytes, making the storage and retrieval of any particular sec-
tion of a textual document very easy. Each byte in memory corresponds to exactly one char-
acter in the text, independent of context.

A byte can hold 256 different values, from 0 to 255. ASCII assigns each letter, num-
ber, and symbol a standard and unique value. For example, the lowercase letter “a” is given
the decimal value 97, which is the same as the binary value 01100001; the numeral “1” is
given the decimal value 49, which is the same as the binary value 00110001. These assign-
ments of numeric values for each symbol are somewhat arbitrary, but all of them are in the
range of 0 to 255 and all of them occupy exactly 8 bits. ASCII distinguishes between upper-
case and lowercase letters and includes many symbols, as well as some unprintable characters
called control characters.

Many messages do not make use of the full ASCII character set. For example, con-
sider this telegram: HI MOM STOP SENT 100 DOLLARS STOP WILL CALL NEXT
WEEK STOP JUNIOR. In ASCII, this 65-character message occupies 65 bytes. In messages
like this example, where only uppercase alphabetic characters, numbers, and spaces are used,
there are only 37 possible character values, which does not fully utilize the range of 256 val-
ues provided by ASCII. This set of 37 different values could be encoded in 6 bits rather than
the 8 bits used by ASCII. Six bits allows for up to 64 distinct values. So we could create a
new, more efficient coding scheme for telegrams that only used 6 bits. This more efficient
coding scheme would enable transmission of the 65-character telegram in about 49 bytes in-
stead of 65 bytes.

Of course, with this new encoding scheme, it would not be possible to send tele-
grams with lowercase characters or punctuation marks. If the encoding scheme were ex-
panded to include uppercase and lowercase characters, and all of the other symbols on a typi-
cal computer keyboard, 7 bits (128 values) might still be sufficient. Thus, for most ordinary
text documents ASCII is not the most efficient way of encoding the message because it uses 8
bits for every character when 7 bits would suffice. If we were to look at the binary values for
the above telegram encoded in ASCII, every byte would begin with a 0 in the most signifi-
cant bit. Since this bit is always zero, it has no information value. We could choose a differ-
ent encoding scheme that eliminated this zero and only used 7 bits, and the entire message
could still be represented intact. This would be a 12.5 percent reduction in the amount of
storage required for the message.

The inefficiency of ASCII is usually tolerated because of the convenience and
context-independence of using individual bytes for storage. In a 7-bit encoding scheme, any
particular byte (8 bits) in the computer’s memory will hold fragments of two characters
(which are 7 bits each). Furthermore, contextual information is now necessary to correctly
extract characters because the pattern of how characters are arranged varies across the mes-
sage. The first byte in the message holds seven bits from the first character and one bit from
the second character; the second byte holds six bits from the second character and two bits
from the third character; the third byte holds five bits from the third character and three bits
from the fourth character; and so on. So, when looking at any particular byte, it is necessary
to know that byte’s position in the overall message to calculate how to properly extract the
two fragments of the characters represented by that byte. ASCII’s one-to-one mapping of
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characters to bytes, and the context independence of extracting characters from the bytes, has
been lost in this 7-bit encoding scheme, thus adding to the complexity of encoding and de-
coding messages.

Reducing Message Redundancy

To illustrate the second potential source of compression, message redundancy, let us consider
the same telegram: HI MOM STOP SENT 100 DOLLARS STOP WILL CALL NEXT
WEEK STOP JUNIOR. Recall that if this message were transmitted in ASCII, it would oc-
cupy 65 bytes because the message is 65 characters long, including spaces.

This message has a 6-character pattern that is repeated in three places—
“ STOP ”—the word stop surrounded by a space on either side. In total, 18 of the 65 charac-
ters in the message are used by this pattern. Suppose we replace this pattern with a single
symbol—let’s use a percent sign—so the message reads: HI MOM%SENT 100
DOLLARS%WILL CALL NEXT WEEK%JUNIOR. The new message contains only 50
characters, a 23 percent reduction in the message’s size.

When the compressed message is received, the original message can be restored ex-
actly by replacing all of the percent signs with the “ STOP ” text pattern. To do this, how-
ever, the receiver of the message must know that this encoding is being used. If this were not
agreed upon in advance, a dictionary would have to be transmitted along with the message to
enable the receiver to decode the compressed message. Transmitting such a dictionary, of
course, requires sending additional data, reducing the total amount of compression that is
achieved.

This substitution works because there were no other percent signs in the original
message. If the original message had said SENT 100% instead of SENT 100 DOLLARS,
percent signs could not be used for encoding the “ STOP ” pattern. Otherwise, the decom-
pression algorithm would produce an incorrect decoding of SENT 100%, decoding it as
SENT 100 STOP instead.

Another thing to note about this substitution is that it is sensitive to the kinds of
messages being transmitted. The substitution of percent signs for “ STOP ” might work well
for telegrams, but it would be unlikely to work well for transmitting other kinds of text
documents, or other kinds of data such as images or video. However, in these other types of
data files, other patterns of redundancy may emerge. For example, in long English text
documents the pattern “ the ” might be very frequent and a potential source of compression.
But this pattern might not appear very frequently in Spanish text documents. Similarly, large
blocks of solid color, such as blue sky, might appear in photographic images.

Probability Models

In order to take advantage of the redundancy in a message, it is necessary to know what the
high-frequency patterns are likely to be. This is called a probability model for the message. A
probability model for English would assign high probabilities to patterns like “ the ” and low
probabilities to uncommon words or patterns. Then a compression algorithm can concen-
trate on these high-frequency patterns for potential sources of compression. Documents that
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are a good match for the probability model will be compressed better than documents that
do not match as well. For example, using a probability model for English text documents for
compressing an image would be unlikely to work very well.

Some compression algorithms rely on probability models that are computed in ad-
vance. For example, if many textual documents are to be transmitted, a corpus of typical
documents could be analyzed in advance to form the probability model. Similarly, if many
aerial images will be transmitted, a corpus of such images could be used to compute a prob-
ability model for them. In either case, both the compressor and the decompressor would use
the model for all messages that are transmitted.

Other compression algorithms incrementally build a probability model as they com-
press each message. These algorithms are adaptive. If they are fed English text documents
they will form a different probability model than if they are fed Spanish text documents or
images. These algorithms might assign a high probability to “ the ” in a typical English
document, and high probabilities to “ el ” and “ la ” in a Spanish document. However, a dis-
advantage to these algorithms is that the probability model changes for every document, and
the decompression algorithm needs the model to decode the message. When using this tech-
nique, the compressor and decompressor cannot agree in advance to use on a single prob-
ability model, so the compressor must somehow transmit the probability model to the de-
compressor for use in decompression. Clever algorithms are able to transmit the probability
model to the decompressor with no additional overhead beyond the transmission of the
compressed message itself. The decompressor then incrementally builds the probability
model as it is decoding the message data.

Message Approximation (Lossy Compression)

In lossy compression, some inaccuracies are tolerated in the decompressed message in order
to improve compressibility. For example, considering the same telegram message, HI MOM
STOP SENT 100 DOLLARS STOP WILL CALL NEXT WEEK STOP JUNIOR, suppose
we decided to eliminate the “ STOP ” patterns completely: HI MOM SENT 100
DOLLARS WILL CALL NEXT WEEK JUNIOR. Some information in this compressed
message has been thrown away, and the recipient cannot precisely reconstruct the original
message. In this example, the number of STOPs in the original message, and their exact
placement, have been lost. This loss of information might be tolerated if the important in-
formation is still conveyed. For example, if Junior’s mother received this message, she would
probably still understand it.

However, with this lossy encoding scheme there are other messages that would be en-
coded the exact same way. One example is: HI STOP MOM SENT 100 DOLLARS STOP
WILL CALL NEXT WEEK STOP JUNIOR. In the original telegram, it was implied that
Junior sent the 100 dollars, while this second message indicates that the mother sent the 100
dollars. Using the lossy compression algorithm where STOPs are discarded would result in
these two different messages being indistinguishable by the recipient. This illustrates a risk of
lossy compression: that important information will be lost, leading to a garbled or erroneous
message.

As with the use of probability models for eliminating message redundancy, lossy
compression strategies vary for different types of data. In English text, eliminating the pat-
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terns “ a ” and “ the ” might be a useful strategy because these words do not convey much
important information. In images, the type of information that is typically discarded is the
information that is less useful to the human visual perception system.

The following chapters describe popular lossy and lossless algorithms in more detail.
We begin in Chapter Three with a discussion of lossless compression. Lossless compression
results in greater communications throughput without any loss of information. The chapter
describes how this is achieved and the potential quantitative benefits. Subsequent chapters
describe lossy techniques, where information is intentionally discarded to further improve
compression.
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CHAPTER THREE

Lossless Compression

The objective of lossless compression is to produce compressed output that is smaller than
the input data but to do so in a reversible manner, so that the input data can be exactly re-
constructed from the compressed data. The steps in lossless compression are preprocessing,
probability model, and probability coding. The method used for reconstructing the original
data, or decompression, is the inverse of the process in this diagram. Figure 1 shows the steps
of lossless compression, with some details of the preprocessing step.

Figure 1
Lossless Compression Step 1: Preprocessing
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Lossless Compression Step 1: Preprocessing

In some compression algorithms, the input data goes through a transformation step prior to
the compression process. This transformation step is called preprocessing, and it takes advan-
tage of contextual information to improve the compressibility of the data.

An example of preprocessing is run-length encoding. Run-length encoding takes se-
quences of repeated patterns and replaces them with a (count, pattern) pair. For example, a
run-length encoder might replace the text pattern aaaaaabbbbb with (6,a)(5,b). Another ex-
ample of run-length encoding is used by fax machines, where sections of solid white between
lines of text or at the end of a document can be compressed very efficiently. A fax machine
might say the equivalent of “the next six inches on this page are blank” instead of transmit-
ting this section of the page as if there were ink patterns on it.
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Another kind of preprocessing that might be used by a lossless compressor for video
streams is called frame differencing. In frame differencing, a prior video frame is subtracted
from the current frame. To the extent that the two frames are similar, this will cause large
portions of the resulting frame to be zero. Run length encoding could then be effectively ap-
plied to these sections. The decompressor can still exactly reconstruct the current frame, by
starting with the prior frame and adding the decoded data for the current frame to it.

Lossless Compression Step 2: Probability Model

Figure 2 expands on the next step in lossless compression, the use of a probability model to
capture information.

Figure 2
Lossless Compression Step 2: Probability Model
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The central component of a lossless compression algorithm is a probability model for
the input data. A probability coder consults this model to determine how it will encode in-
put data patterns in the compressed output. Input patterns that have high probabilities are
coded with short output patterns, while input patterns that have low probabilities are coded
with longer output patterns. If the input data is consistent with the probability model, there
will be a preponderance of high-probability input patterns, and thus the coder will make fre-
quent use of the short output patterns. The overall result would be a compressed output that
is smaller than the input data. However, a law of compression states that there also exists
some input data that is not a good fit for the probability model, and for that input data the
compressed output will actually be larger than the input.

Static Versus Dynamic Probability Models

Some probability models are static and do not vary for different input data. An example of a
static probability model would be the frequencies of word occurrences in English text docu-
ments. Such a probability model might work quite well for compressing various kinds of text
such as books, emails, and newspaper articles, but it would probably do poorly for images
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and other binary input data. Because no single static probability model would work well for
all kinds of input text, many of the most effective compression algorithms have dynamic
probability models. These algorithms build or modify the probabilities as input data is en-
countered.

Examples of dynamic probability models are Prediction by Partial Matching, and a
family of dictionary-based algorithms based on a family of compression algorithms named
Lempel-Ziv (Ziv and Lempel, 1977). The Lempel-Ziv family includes compression standards
such as zip, gzip, compress, v.42bis (used by modems), and gif (used for encoding images).

These algorithms incrementally build a dictionary of the patterns encountered in the
input data and track the frequencies of occurrence of the patterns. The advantage of this
method is that the probability model does not incorporate any a priori assumptions about
the characteristics of the input data. Therefore, these algorithms are good for multipurpose
use: no matter what the input data is, the algorithm can create a suitable probability model
and therefore achieve a reduction in data size. However, an important challenge with
dictionary-based probability models is that the dictionary must somehow be sent to the re-
ceiver along with the compressed data. Otherwise, the decompression algorithm would not
know what patterns to use in reconstructing the original data. If the size of the compressed
data plus the size of the dictionary is not smaller than the input data, the compression would
not be a success. A key feature of the Lempel-Ziv family of algorithms is that the decompres-
sion algorithm rebuilds the dictionary incrementally as it works through the compressed
data. That is, no additional data must be sent describing the dictionary itself.

Lossless Compression Step 3: Probability Coding

The third step in lossless compression involves the probability coding of the data based on
the probability model, as shown in Figure 3.

Figure 3
Lossless Compression Step 3: Probability Coding
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Given a probability model, each element in the input data is then looked up in the
model and coded accordingly. As mentioned earlier, high-probability patterns are assigned
small output patterns, and low-probability patterns are assigned larger output patterns.
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Almost all lossless compression algorithms use one of two popular probability coding
schemes: Huffman Coding or Arithmetic Coding. Huffman Coding is optimal when all of
the probabilities happen to be powers of two—something that would rarely occur in real-
world applications. In practical use, Arithmetic Coding has a slight data-reduction advantage
over Huffman Coding, but it is more computationally expensive and is subject to patent roy-
alties.

Performance of Lossless Compression

Lossless compression algorithms tend to work well for textual data. They can also be used on
image data, but much higher compression ratios can be achieved by using lossy compression
algorithms.

Table 2 shows the range of compression that can be achieved using two technologies
employing different probability models. The range of performance depends on the nature of
information to be compressed, i.e., how many repetitive patterns are embedded.

Table 2
Compression Ratios Achieved by Lossless Algorithms

Lossless Compression

Technology Example Standard Compression Ratio

Lempel-Ziv gzip 1:1 to 9:1

Predictive/Huffman Coding Lossless JPEG 1.3:1 to 3:1

The next two chapters discuss two lossy compression algorithms, Joint Photographic
Experts Group (JPEG) and Moving Picture Experts Group (MPEG). These lossy compres-
sion schemes build upon lossless compression: lossless compression is one component of the
overall lossy algorithms.
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CHAPTER FOUR

Lossy Compression of Images

As stated above, when lossy compression is used, the input image cannot be exactly repro-
duced upon decompression. The key to successfully utilizing a lossy algorithm is that the re-
sulting approximation of the original image must be close enough to original to be accept-
able. The amount of divergence that is acceptable will vary across applications. For example,
an image that will be enlarged for a museum exhibit may not be able to tolerate much inac-
curacy, while an image from a security camera might tolerate much more inaccuracy. In gen-
eral, lossy compression algorithms can be tuned to vary the amount of compression, and the
corresponding amount of lossiness.

A very popular lossy compression algorithm is JPEG, which is used for image data.
Figure 4 shows the major steps in the JPEG compression process.

Figure 4
Model of JPEG Compression
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First, color images are converted into a format that will facilitate compression, called
YIQ.1 Then, a discrete cosine transform (DCT) algorithm is applied. After this, the data is
quantized, discarding some of the less important information. Finally, a lossless compression
algorithm further compresses the data. As in all types of compression, these steps are reversed
to decompress the image.

For the remainder of this chapter we will describe in more detail these steps of JPEG
compression.

Image Representation

First, recall how images are represented digitally. Images are almost always stored as rectan-
gular objects. The rectangle is divided into square dots called pixels (a contraction of “picture
elements”). An uncompressed image is stored in a computer file as a sequence of pixel values,
_______________
1 The components of YIQ are luminance (Y), in-phase (I), and quadrature (Q).
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starting with the pixel value at the top left corner of the rectangle and moving across a row of
pixels to the right, followed by the next row, and so forth until all of the pixels are stored.
This storage format is called scanline format.

For monochrome (or grayscale) images, each pixel is represented by an 8-bit value
ranging from 0 to 255, where a higher number represents a brighter pixel and a lower num-
ber represents a darker pixel. White is 255 and black is 0, while a dim gray might be 64.
When the input image is a color image, it is usually represented as a set of three mono-
chrome images representing color planes: red (r), green (g), and blue (b), and each of these is
8 bits in depth, for a total of 24 bits. This is known as RGB (red, green, blue) format. For
each pixel in an RGB color image, the color and intensity are jointly determined by adding
the red, green, and blue components for that pixel, using an additive color model. In this
model, white is represented by r=255, g=255, and b=255, where all components have the
maximum value; black is represented by r=0, g=0, and b=0. A bright yellow would be r=255,
g=255, b=0, because adding a bright red to a bright green yields a bright yellow; a dim gray
would be r=64, g=64, b=64, because adding the three colors together with equal intensity
yields a monochrome pixel.

As an example, a typical image from a low-end digital camera of 1.3 megapixels
might produce a rectangle that is 1280 pixels wide and 960 pixels tall. This is large enough
to fill most of a typical computer screen. The total number of pixels in this image is 1280
times 960, or 1,228,800 pixels. Since each pixel occupies three bytes (24 bits), the total
number of bytes occupied by this image in uncompressed form is 3,686,400, or approxi-
mately 3.5 megabytes.

When the computer is displaying an image, it uses the first three bytes to determine
the color of the pixel in the top left corner, the next three bytes to determine the color of the
pixel just to the right of that one, and so on across the top row of 1280 pixels. Then it moves
to the next row of 1280 pixels, and the next, until it has completed the 960th row. Because
each individual pixel is very small and they are so close together, we do not usually notice the
individual pixels. Instead, our visual system interprets the entire assemblage of pixels as a pic-
ture.

JPEG Compression Step 1: Color Conversion and Downsampling

Figure 5 illustrates the first step in JPEG compression, which is color conversion and down-
sampling. The top line of the figure shows a color image broken down into its red, green,
and blue components. Each of the components is a monochrome image. Monochrome im-
ages are usually displayed using grayscale, but in this illustration we are using monochro-
matic color images for illustrative purposes.

JPEG works with either color or monochrome (grayscale) images. With color images,
the first step in the JPEG process is to convert the red, green, and blue pixel values into a dif-
ferent representation called YIQ. This is a standard representation used by broadcast televi-
sion. The second line of the illustration shows an image broken down into the YIQ compo-
nents. As with RGB, the YIQ breakdown of three monochrome components does not
discard any information.
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Figure 5
Color Conversion and Downsampling

YIQ encoding puts all of the intensity information into a single luminance image
(Y). The other two components of YIQ contain the color information, often called chroma.
In Figure 5, the two chroma components are simulated. One reason television broadcast uses
this standard is that it affords a way to provide backward compatibility with black and white
televisions. The Y component is exactly the information needed by black and white televi-
sions; the chroma components were added to TV signals in a way that would not interfere
with a black and white television’s ability to receive this Y signal.

If JPEG is already starting with a monochrome image, the YIQ conversion is not
necessary. There is no color information in the image, so the I and Q components would be
empty. A monochrome image is equivalent to the Y component of a YIQ image.

While the conversion from RGB to YIQ itself does not compress the image or lose
information, most JPEG algorithms do “chroma downsampling,” which reduces the spatial
resolution of the I and Q components by one-half in each dimension. This is done by
working with 2×2 squares of pixels. That is, each set of four pixels (arranged in a square) is
replaced by a single average I value and a single average Q value rather than four of each.
This reduction in color resolution is acceptable because the human visual system does not
typically notice when color information is approximated in this way. Our visual system is
much more sensitive to luminance than chroma.

For example, in chroma downsampling the first two pixels from the first row of the
image and the first two pixels from the second row of the image are considered together.
These four pixels originally have 3 bytes each of Y, I, and Q information, for a total of 12
bytes. After chroma downsampling, each pixel still has its Y byte, but they now share a single
set of average chroma values: a single byte of I and a single byte of Q. These I and Q values
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are simply the averages of the four individual I and Q values for the set of pixels. The result-
ing data for these four pixels totals to 6 bytes: 4 bytes of Y, one byte of I, and one byte of Q.

Although the reduced color data does not significantly reduce the fidelity of the im-
age, chroma downsampling has achieved a data reduction of 50 percent. The cost is some
loss of data, and the original image can no longer be exactly reconstructed from the com-
pressed image. This is the first of several lossy steps in the JPEG algorithm. Some JPEG
compressors offer the option to turn off this chroma downsampling step.

Each of the Y, I, and Q components are monochrome rectangular sets of pixels. In
the case of our 1280×960 digital camera image, we now have a 1280×960 Y image, and
640×480 I and Q images. For the remainder of the compression steps, JPEG treats each of
these separately using the same set of steps. Therefore, the following descriptions will detail
the operations performed on a single one of these three images.

JPEG Compression Step 2: Discrete Cosine Transformation

The DCT does not work on an entire image at one time. Instead, for the next step in the
process, the DCT algorithm breaks the image into blocks, which are square pieces of the im-
age measuring 8 pixels by 8 pixels.

The DCT is applied to each block individually. DCT relies on Fourier Series theory
(Carslaw, 1952), a trigonometric principle that any function can be represented by a series of
sine (or cosine) functions of various frequencies and amplitudes. In JPEG, a set of 64 cosine
basis functions is predefined for use in the series. The basis functions vary in frequency in the
horizontal and vertical dimensions. A set of 64 basis functions is shown in Figure 6. Each
square in the figure is one of the basis functions and consists of an 8×8 set of pixel values.

For a given 8×8 block from the input image, the DCT algorithm calculates a coeffi-
cient for each of the 64 basis functions. Each coefficient represents the amplitude at which its
basis function is added into the series. The resulting 8×8 block of coefficients thus represents
the linear superposition of basis functions that best describes the pixel block. If a basis func-
tion is not needed for a particular series, the coefficient is zero.

The input block contains 64 bytes (8 pixels by 8 pixels, one byte each). The result of
the DCT transformation is a new set of 64 8-bit values, the coefficients of the basis func-
tions. In principle, the DCT does not introduce loss, but because the calculations are based
on transcendental functions,2 the computer cannot calculate them with perfect accuracy.
Therefore, this step is not exactly invertible and results in loss of data, although the loss is
minor compared with the other lossy steps in the JPEG algorithm.

JPEG Compression Step 3: Quantization

The next step in the JPEG compression process is quantization. Quantization is essentially a
rounding operation, where some of the less significant bits are discarded.
_______________
2 Transcendental functions are those that cannot be expressed in terms of algebraic formulas. Digital computing devices use
approximations in computing these functions. Volder (1959) introduced a common algorithm for this approximation.
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Figure 6
Discrete Cosine Transformation

The DCT coefficients can be arranged in order from the lowest frequency (the direct
current (dc) component, which is the average intensity of the 8×8 block) to the highest fre-
quency. Quantization is applied to each coefficient, but not uniformly. More bits are re-
tained for the lower-frequency components than the higher-frequency components. Again,
this choice is made for perceptual reasons: human vision is more sensitive to the lower-
frequency components. Therefore, a lookup table of quantization values is used to decide
how much of each coefficient should be discarded. This quantization table is transmitted
along with the compressed image, and can vary from one run of the JPEG algorithm to the
next. Most JPEG programs permit the user to select a “quality” value. This quality value se-
lects a quantization table that discards either more or less of the resolution of the DCT co-
efficients. Each JPEG implementation can choose the exact values used in the quantization
table because the decompression algorithm receives the table along with the image and will
use it to reverse this step.

JPEG algorithms typically use different quantization tables for the luminance and
chroma components. To optimize the JPEG algorithm for human viewing, psychovisual ex-
periments can be performed to try to determine optimal quantization values for each of the
Y, I, and Q components, in order to minimize the introduction of visible defects. In practice,
however, this cannot be optimized for all compression situations because it depends on im-
age characteristics, display characteristics, and viewing distance. Furthermore, the optimal
settings for human viewing may not be optimal when the decompressed image must be proc-
essed or interpreted by machines. Overall, the quantization step is the primary source of
lossiness in JPEG.
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JPEG Compression Step 4: Lossless Compression of the New Image

The final step in JPEG compression is lossless compression of the quantized DCT coeffi-
cients.

After the quantization step, 8×8 pixel blocks may have zeros for the coefficients of
many of the higher-frequency DCT components. In fact, for regions of the image that have
solid colors, all of the components except the dc component might be zero. Furthermore,
from one 8×8 block to the next, the dc component is likely to be similar. Therefore, for fur-
ther compression, the dc component is separated from the alternating current (ac) compo-
nents.

Each dc coefficient is coded as the difference from the dc coefficient in the previous
block. When adjacent blocks are similar, these difference values will be small numbers, in-
creasing the compressibility of the series of dc coefficients. The ac coefficients, which may
have long series of zeros, are especially amenable to run-length encoding compression.

The final step in JPEG takes advantage of the compressibility of these dc and ac co-
efficients by passing them through lossless compression algorithms. In general, the amount of
compression achieved by this lossless compression step is dependent on the amount of quan-
tization done in the prior step. Higher quantization introduces greater lossiness but increases
the uniformity of the coefficients, yielding higher compression in this step.

Performance of Lossy Compression Algorithms

In practical use, the JPEG algorithm offers compression ratios of up to 100:1 (Balogh et al.,
2000). However, when it is desirable to minimize visible defects and produce a decompressed
image that is visually nearly indistinguishable from the original, the compression ratio
achieved is usually much less, in the range of 12:1 to 16:1. When defects are visible, they
usually reveal the 8×8 block pattern that is used by the algorithm. Since each block is inde-
pendently computed, there are often discontinuities in color or intensity at the transitions
between blocks. Table 3 illustrates the range of performance that can be achieved with lossy
compression algorithms in comparison with lossless algorithms.

It is important to note that measures of quality are subjective. There are no accepted
industrywide, universally applicable standards for measuring the amount of information lost
in a lossy compression algorithm. Therefore, any application of lossy compression should be
coupled with a metric for the amount of loss that is appropriate for how the decompressed
information will be used (Hillman et al., 2002; JHU, 2002; Kosheleva, Mendoza, and Ca-
brera, 1999; Lai, Li, and Kuo, 1996; Rountree, Webb, and Marcellin, 2002; Yeh and Ven-
brux, 2002).

JPEG 2000 and Discrete Wavelet Transform

The new JPEG 2000 compression scheme is very similar to the model described above for
JPEG (JPEG, 2003). It has many improvements over JPEG, such as a more sophisticated
quantization step, but one major difference is the replacement of the discrete cosine trans-
form (DCT) with a discrete wavelet transform (DWT). The DWT uses the same principle
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of representing image blocks as a sum of basis functions, but instead of using transcendental
functions, the DWT offers a choice between a few sets of other basis functions. One of these
sets of basis functions allows the coefficients to be calculated using integer arithmetic, elimi-
nating rounding errors at this step, and thus providing a lossless compression option if the
chroma downsampling and quantization steps are skipped. JPEG 2000 compression ratios
can be as much as a factor of three greater than JPEG; however, this performance superiority
is much smaller for high-quality imaging applications, where the advantage is about 10–20
percent (Christopoulos, Skodras, and Ebrahimi, 2000). At similar compression ratios, JPEG
2000 produces better image quality than JPEG.

Table 3
Compression Performance of Lossy and Lossless Algorithms

Compression of Still Images

Lossless Lossy

Technology
Example
Standard

Compression
Ratio

Example
Standard

Compression
Ratio

Lempel-Ziv gzip 1:1 to 9:1

Predictive/Huffman Coding Lossless JPEG 1.3:1 to 3:1

Discrete cosine transform (DCT) JPEG 3:1 to 100:1

Discrete wavelet transform (DWT) JPEG 2000 1.5:1 to 4:1 JPEG 10:1 to 350:1
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CHAPTER FIVE

Lossy Compression of Video

Video is simply a sequence of still images. In digitized NTSC video, there are 30 frames per
second, and each frame is a 640×480-pixel 24-bit color image. One way to compress video
would be to simply compress each individual frame using the JPEG algorithm. However,
there are additional attributes of video that can lead to further compression. In particular,
adjacent video frames are usually quite similar to each other. Since it would treat each frame
individually, JPEG alone cannot take advantage of these interframe similarities.

MPEG builds upon JPEG to gain further compression from interframe similarities in
video (MPEG, 2003). A model of the MPEG family of algorithms, which include MPEG-2
and MPEG-4, is shown in Figure 7.

Figure 7
MPEG Video Compression
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The first step in MPEG is to process each individual frame with a discrete cosine
transform compressor similar to what is used in JPEG. Then, additional analysis is per-
formed to take advantage of interframe similarities.

MPEG Compression Step 1: DCT Conversion of Individual Frames

The first step in MPEG is to apply a DCT (JPEG) compression algorithm to each individual
frame of the video stream. In actuality, the two steps in the MPEG process are more inte-
grated than depicted in this diagram. The algorithms used in step 2 make use of intermediate
results from the DCT compression process. However, for conceptual simplicity it is useful to
portray the DCT step and the other analysis as distinct steps. For details of what happens in
the DCT step, please refer to the description of the JPEG algorithm in the previous chapter.
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MPEG Compression Step 2: Interframe Similarity and Motion Analysis

The essence of step 2 in the MPEG compression process is to take advantage of similarities
among nearby frames in the video stream. Conceptually, this is done by occasionally trans-
mitting independent frames, which can be wholly reconstructed without referring to any
prior or subsequent frames, and between these independent frames transmitting information
that allows additional frames to be derived from the independent frames.

Interframe Similarity

The independent frames in MPEG are called I-frames. For each I-frame, MPEG passes the
JPEG-compressed video frame straight through to the compressed video stream. Clearly,
JPEG-compressed images can be decompressed without referring to any other frames in the
video stream.

In addition to I-frames, JPEG computes dependent frames that cannot be recon-
structed without referring to other frames in the video streams. These are P-frames and B-
frames. P-frames are called predicted frames, and are dependent on the most recent I-frame or
P-frame. B-frames are called bi-directional frames, and are dependent not only on the most
recent I-frame or P-frame, but also on the next P-frame or I-frame. The prior and subse-
quent frames that are consulted to compress and decompress P- and B-frames are called refer-
ence frames.

To compute a P-frame, the reference frame, which is the immediately prior frame of
video, is subtracted from the current video frame. This process is illustrated in Figure 8.

Figure 8
Frame Differencing with Interframe Similarity

Note that during decompression, the decompressed reference frame will be used to
rebuild the P-frame. Since the reference frame will have been compressed with JPEG, the
decompressed reference frame will not be identical to the original reference frame. For this
reason, the reference frame used in the P-frame calculations is not the original reference
frame from the input video, but a version of the reference frame that has undergone com-
pression and decompression. This extra decompression step inside the compression algo-
rithm adds to the computational demands of the algorithm.

Consider a video sequence where there is no motion. In this situation, each video
frame would be identical, and the difference will be zero, allowing the P-frame to achieve a
huge compression factor.



Lossy Compression of Video    27

At some points such as scene changes or objects entering or leaving the scene, a better
match for the P-frame might be a subsequent frame. One problem with using a prior frame
as the sole reference frame in the video image is that it does not take advantage of the P-
frame’s similarity to subsequent frames. This is where B-frames come in. B-frames consider
bi-directional similarities relative to two reference frames: the closest prior and subsequent P-
or I-frames. This additional information allows B-frames to be compressed even more than
P-frames, at the cost of additional computational complexity. However, the most computa-
tionally expensive part of the P-frame calculation is motion analysis.

Motion Analysis

In video there is almost always motion, so the computation of the predicted frames also in-
cludes analysis to account for this motion. This analysis calculates estimates of how various
blocks in the reference image have moved from the reference frame to the predicted frame.
Based on these motion estimates, blocks from the reference frame are shifted before the sub-
traction is done. A similar process is used for both P-frames and B-frames. For B-frames,
both the prior I-frame and the following P-frame are used in computing the motion analysis.

Usually the motion-adjusted reference frame will be a better match to the P-frame or
B-frame, and the subtraction will yield more zeros, resulting in better ultimate compression.
P- and B-frames are represented in the compressed output as the set of motion estimates and
the difference frame. The difference frame is compressed with a JPEG-like DCT compressor.

Motion analysis is very computationally expensive; in fact it is the most computa-
tionally expensive component of the MPEG algorithm.

Sequencing of I-, P-, and B-Frames

The series of video frames is therefore encoded by a series of I-, P-, and B-frames. An exem-
plary pattern could be IBBPBBPBB, and this pattern is then repeated, as shown in Figure 9.

Figure 9
Sequencing I-, P-, and B-frames
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Note, however, that to both compress and decompress a B-frame, the subsequent
P- or I-frame must be available to the algorithm. This means that the compression and de-
compression must be done out of order. The actual transmission sequence for the com-
pressed video takes this factor into account, transmitting frames out of order: IPBBPBBIBB,
and then the PBBPBBIBB pattern is repeated. This corresponds to transmitting the frames
in this sequence: 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, and so on.
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Note that if there is a transmission error of an I- or P-frame, subsequent P- and B-
frames will propagate this error until the next I-frame. The sequencing of I-, P-, and B-
frames can be adapted to the application. Using more P- and B-frames can improve the
compression ratios achieved, at the expense of computational complexity and susceptibility
to corruption due to transmission error. Using fewer P- and B-frames reduces computational
demands and improves the robustness to transmission error, at the expense of reduced com-
pression.

MPEG Summary and Performance Estimates

As mentioned above, I-frames are stand-alone JPEG-like images and are not dependent on
any of the prior frames. I-frames thus achieve typical JPEG compression ratios. Typically, P-
frames achieve 2–3 times as much compression as the I-frames, and B-frames achieve 2–3
times as much compression as P-frames. Overall, MPEG can achieve compression ratios of
more than 200:1, but for high-quality applications the typical range is between 14:1 and
140:1 (Thom and Deutermann, 2001). This large range is a result of variance in how much
motion is contained in video data. The interframe similarity and motion analysis is not as
effective with high-motion video, resulting in lower compression ratios.

In addition to the video stream, MPEG includes provisions for transmitting syn-
chronized audio, as well as auxiliary data that is synchronized to the video stream (for exam-
ple, time codes, position information, camera settings, etc.). Audio is usually encoded with a
lossy audio compression algorithm, and the other data is usually either transmitted uncom-
pressed (if it is very small) or with lossless compression. In normal applications, the video
stream dominates the total amount of data that must be transmitted, and the audio and aux-
iliary data do not have a great impact on storage size or bandwidth demands.

Summary of Video Compression Algorithm Performance

Table 4 summarizes compression performance estimates for the types of lossless and lossy
algorithms discussed in this report.

Without taking advantage of interframe redundancies, any still image compression
algorithm (such as gzip) could be applied to video by compressing each individual video
frame as if it were a still image. This is the technique used by Motion JPEG 2000, which
uses the JPEG 2000 algorithm based on DWT (Yu, 2002). When video compression does
not take advantage of interframe similarities, the algorithm’s compression ratio for video will
be similar to its compression ratio for still images.

In all of the lossy compression algorithms shown, increased compression results in a
decrease in quality. Therefore, in practice, the larger compression factors are not useful for
the Army’s needs. The current standard in the entertainment industry for transmitting high-
quality, high-motion video is MPEG-2, using compression ratios near the low end of the
compression range (14:1 to 75:1).

When comparing compression ratios of lossy algorithms, it is important to consider
the quality factor. For example, two algorithms that achieve a compression factor of 100:1
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Table 4
Summary of Compression Performance Estimates

Compression of Still Images Compression of Video

Lossless Lossy Lossy

Technology
Example
Standard

Compression
Ratio

Example
Standard

Compression
Ratio

Example
Standard

Compression
Ratio

Lempel-Ziv gzip 1:1 to 9:1

Predictive/Huffman
Coding

Lossless
JPEG

1.3:1 to 3:1

Discrete cosine
transform (DCT)

JPEG 3:1 to 100:1 MPEG-2
and
MPEG-4

8:1 to 210:1

Discrete wavelet
transform (DWT)

JPEG 2000 1.5:1 to 4:1 JPEG 10:1 to 350:1 Motion
JPEG 2000

1.5:1 to 350:1

may differ in the quality of the image after decompression. The quality factor is hard to ana-
lyze without empirical testing. If the decoded images are to be viewed by humans, then hu-
mans should be the judges of quality; but if the decoded images are going to be analyzed by
computers, the analysis algorithms should be tested to see how various compression algo-
rithms affect the performance of the analysis algorithms.

Although opinion is not unanimous, it is generally agreed that JPEG 2000 achieves
higher quality than JPEG at any given compression ratio. One thing missing from the table
is an algorithm that combines the DWT compression of JPEG 2000 with interframe simi-
larity analysis. This may enable compression ratios up to 1000:1 for low-quality video, and
ratios of perhaps 45:1 to 250:1 for high-motion, high-quality video. The latter figures as-
sume a level of quality acceptable to applications in the entertainment industry. Even if these
hypothetical compression ratios were to be achieved, NTSC video would require 450 kbps of
bandwidth and HDTV would require 3.6 Mbps.

Improved throughput of video is attracting increasing attention from commercial in-
dustry as firms examine the provision of streaming video to cellular phones. Research at Car-
negie Mellon University on advanced H.263 protocols has demonstrated reasonable desktop
video data rates at 70 kbps (AMP, 2004). This is achieved by using advanced compression
techniques, by reducing frame rates, and by restricting the field of view of the camera. This
rate compares favorably with typical commercial fixed-site videoteleconferencing (VTC) data
rate requirements of 384 kbps.
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CHAPTER SIX

Managing Network Bandwidth

The compression algorithms discussed in this report show promise for reducing the demands
for bandwidth when transferring text, images, and video. Reductions of over two orders of
magnitude are potentially available. However, there is a loss of quality when lossy compres-
sion is used, and the significance of this loss will depend on the needs of the individual user.
Some users, at some times, will require the highest level of quality, which will require the
most bandwidth. These needs may continually change depending on the operational situa-
tion, so prioritizing or predicting what levels of quality will be acceptable must be done dy-
namically. This chapter discusses some commercially available technologies that enable indi-
vidual users to tailor their quality of service according to their dynamic needs.

Network Accelerators

Network accelerators are a new technology commonly employed by commercial internet
service providers (SlipStream, 2003; Propel, 2004; Radiance, 2004). Network accelerators
can improve effective throughput to users by 2–3 times. In addition to improving effective
capacity, they allow the user to control the quality of images and potentially the quality of
video that is provided. Users are thus able to adjust the relative tradeoff between bandwidth
and quality. Moreover, they are able to dynamically modify this tradeoff as events occur.

Network accelerators work by providing more efficient management of internet ses-
sions. Network accelerators use a combination of techniques to improve network capacity:

1. Compression. Network accelerators use selectable levels of compression. If the user re-
quests high-quality data, it is passed with lossless or very-high-quality lossy compression.
The user can also request other levels of quality, which the system can meet with different
levels of compression. If a user wants a large number of images quickly, he can specify
high compression to download the images quickly. After review, the user might then se-
lect certain images for replacement by higher-quality versions. This enables the user to fil-
ter incoming data according to need.

2. Managing network sessions. The network accelerator manages the session on the internet
to maximize efficiency. For instance, on the World Wide Web, users might find that
when downloading a file, the data rate of the download decreases as the session pro-
gresses. This occurs because the internet protocol manages the session to balance needs
across all users. Network accelerators manage these sessions more efficiently to allow
higher data rates for download.
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3. Caching. Network accelerators will cache data in the network depending on demand.
This caching places multiple copies of data within the network. If the data is in high de-
mand, caching reduces the “distance” between the user and the data, thereby reducing the
number of intermediate nodes and thus increasing network capacity and reducing trans-
mission delays.

Implementing Network Acclerators

Network accelerators work on the last link in the network connection, between the user and
the periphery of the network. The rest of the network is unaffected, as shown in Figure 10.
However, this last link, especially to mobile users, is an important one to address because it
often has the lowest bandwidth and reliability.

Figure 10 depicts users equipped with network accelerator software requesting in-
formation, along with desired quality of service, from the nearest network connection. That
connection, equipped with network accelerator software and possibly hardware, then obtains
the desired information from the larger network, applies the desired quality of service (e.g.,
level of compression), and transmits the data to the user. The network accelerator thus re-
quires installation only at the user level and at the first link into the larger internet.

Figure 10
How Network Accelerators Overlay the Existing Network
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How the Army Can Take Advantage of Network Accelerators

As discussed above, implementation of network accelerators requires modification to the
user-level systems and to the network’s point-of-entry systems. The software on the user’s
computer then negotiates with the nearest server, which obtains the information, caches the
original data, applies compression to achieve the desired quality of service, and transmits the
data to the user. This then improves the capacity of the last link, or “last mile,” connection
and leaves the rest of the data on the network untouched. Desired level of quality for an in-
dividual user only affects the information passed along that user’s last mile link, which is of-
ten the slowest link and thus will benefit the most from compression.

Network acceleration can improve capacity by factors of 2 to 3 depending on use.
The Army could take advantage of advanced compression techniques, as discussed earlier in
this report, to improve network performance. Current commercial systems focus on com-
pression of imagery and do not currently accelerate real-time streaming connections used for
voice and video, which will be useful for distributed videoteleconferences. Applying network
acceleration technology to this type of data will require some investment by the Army in
building upon the commercial technologies.
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CHAPTER SEVEN

Concluding Remarks

The issues and tradeoffs in the solution space of video formats and compression schemes are
summarized in Figure 11. These broad categories encompass several of the considerations
detailed in this report.

Figure 11
Required Tradeoffs
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For example, bandwidth requirements affect network capacity requirements and the
cost of acquiring that capacity, and may impact security and the reliable delivery of data;
quality includes measures such as image fidelity and latency; and computational demands
affect equipment cost, power demand, and mobility. Increases or decreases in any of these
broad quantities will have an impact on at least one of the other quantities. Here are some
examples:

• In general, as compression is increased, the quality of the received video stream is de-
creased. Whether humans or automated systems will interpret the video, reduction in
video quality or fidelity can hinder analysis. However, there are currently no objective
standards for measuring or assessing the quality of the compressed output.

• Compression algorithms that attempt to retain quality while using high compression
ratios will often require significant processing at the source or destination ends. Proc-
essing resources may be limited at the sources of these video streams, such as UAVs,
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as well as in some types of receiving nodes in the field (OSD, 2002). Increased proc-
essing demands can also increase demands on batteries or other power sources. Varia-
tions in algorithms can sometimes shift these burdens among the source, intermedi-
ate, and destination nodes.

• When the software processing demands of compression or decompression algorithms
are high, specialized hardware can often be developed to replace software algorithms.
This can increase speed but may also increase equipment costs. As mentioned earlier,
economies of scale can lower equipment costs if consumers are also using the same
technologies, as is the case with JPEG and MPEG.

• As compression is increased and computational demands increase, latencies can be
induced into the video stream. In some cases, latencies may be unacceptable, such as
when remotely controlling an unmanned vehicle. In addition, if compression cannot
happen in real time, the source node may have to temporarily store uncompressed
data for future transmission, imposing larger delays and additional hardware re-
quirements.

Even beyond compression, these three main attributes impose tradeoffs. For example,
commercial network management technologies such as EarthLink’s Propel (Propel, 2004)
supplement compression with additional methods to address bandwidth constraints. They
reduce the amount of overhead in setting up and breaking down connections by keeping
connections open longer and reusing them; they cache data near end users so that it can be
downloaded with lower latency than if it had to be retrieved over the internet at large; and
they apply a user-tunable amount of compression to web images to reduce the data that must
be transmitted over the slowest portion of the link, the last mile to the user’s home. Each of
these, of course, imposes tradeoffs on quality and/or computational demands (e.g., for net-
work management and storage).

Summary and Recommendations for the Army

• The Army can take advantage of commercial compression technologies. However,
– Acceptable levels of quality must be determined.
– User equipment may require increased computing power.

• Network accelerators can improve throughput by factors of 2 to 3. However, they re-
quire
– Changes to network structure and operations, but only for the last mile to the

user.
– Research and development into techniques to enhance real-time streaming data.
– User training in managing demands for quality.

• We recommend that the Army
– Incorporate compression and network acceleration technologies into future sys-

tems.
– Identify where Army-specific tailoring could improve on commercial technologies.
– Develop an experimental plan to determine acceptable levels of quality and to train

users.
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